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Nicolas Houdré1, Diego Marcos2, Dino Ienco2,3, Laurent Wendling1, Camille Kurtz1, Sylvain Lobry1
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Abstract

Remote sensing imagery offers diverse modalities, such as
synthetic aperture radar and multispectral data, which can
bring rich, complementary and valuable information about
observed scenes. This information is of paramount impor-
tance for downstream applications (e.g. land cover mapping,
natural resources monitoring, human settlement characteri-
zation) that may benefit from such complementarity. Remote
sensing imagery often suffers from a lack of labeled data
which can hamper the learning of good representations via
state-of-the-art supervised methods. Self-supervised learn-
ing has thus emerged as a promising paradigm for remote
sensing feature extraction, enabling the extraction of mean-
ingful features without reliance on labeled data. While ex-
isting multi-modal contrastive models effectively capture
shared information between modalities, they often struggle
to account for the inherent heterogeneity of multi-modal re-
mote sensing data. This limitation prevents them from fully
leveraging the complementarity of multi-modal remote sens-
ing data. Probabilistic representation learning has emerged
as a powerful approach to capture the inherent uncertainty
and diversity in multi-modal relationships. In this paper
we present ProMM-RS, a novel multi-modal self-supervised
training framework incorporating a joint probabilistic em-
bedding space to explicitly model the uncertainty of rep-
resentations between different inputs and modalities. We
evaluate our learned representations with a scene classi-
fication downstream task from Sentinel optical and radar
images, effectively showing the potential of probabilistic em-
beddings as a way to measure the relevancy of each modality
representation, especially under an obstructed dataset.

1. Introduction

Given the vast amount and complexity of data collected by
remote sensing (RS) sensors, there is an increasing demand
for advanced methods to extract actionable knowledge from

such vast amounts of data.
Traditional neuron-based supervised approaches, which

are typically designed to optimize representations for a sin-
gle downstream task come with significant limitations. They
require large amounts of annotated data, which is costly
and time-consuming to produce. Additionally, the resulting
representations are often too task-specific, limiting their gen-
eralizability and transferability across different tasks [30].

Self-supervised learning (SSL) has emerged as a com-
pelling solution in machine learning and computer vision for
its ability to produce rich and meaningful representations
of imagery without the need for labeled examples. Among
prominent SSL methods, SimCLR [5] employs a contrastive
framework that maximizes the agreement between differ-
ently augmented views of the same image, relying on a
simple yet effective mechanism to create positive and neg-
ative pairs through data augmentations. In the field of re-
mote sensing, the growing availability of multi-modal data
has driven interest in adapting SSL techniques to exploit
the complementary nature of different sensor modalities.
Multi-modal SSL approaches aim to align representations
across diverse data types, such as optical and Synthetic Aper-
ture Radar (SAR) imagery. For instance, recent studies
have successfully applied self-supervised methods to tasks
like change detection [6, 7, 23] and land cover classifica-
tion [13, 17], demonstrating the potential of SSL to learn
from vast amounts of unlabeled RS data. However, existing
multi-modal SSL approaches face limitations in fully lever-
aging the distinct features of each modality. Many meth-
ods emphasize shared information across modalities while
overlooking modality-specific attributes that are critical for
remote sensing applications, as investigated by [26, 27]. For
instance, SAR imagery is valuable for its ability to capture
structural information under all weather and lighting condi-
tions, making it indispensable for consistent monitoring. In
contrast, optical imagery provides detailed spectral informa-
tion, offering insights into surface materials and vegetation
but is significantly constrained by weather or lighting con-
ditions. The complementary strengths of SAR and optical



data highlight their potential when used together, as they pro-
vide multi-scale heterogeneity in terms of spatial resolution,
spectral richness and consistency.

Recently, probabilistic embeddings have gained signifi-
cant interest among computer vision researchers as a way
to model the inherent uncertainty in multi-modal representa-
tions arising from many-to-many image-text matching [20].
Building on this idea, we aim to adapt a joint probabilis-
tic embedding space to the specific challenges of RS data,
where the diversity and variability of modalities can intro-
duce substantial uncertainty in representations. This ap-
proach is particularly beneficial for remote sensing scenarios
characterized by significant heterogeneity across modalities.
By incorporating probabilistic embeddings into multi-modal
SSL, our framework addresses key challenges in leverag-
ing the complementary nature of different modalities and
improves robustness, even when datasets are obstructed or
corrupted (e.g. by cloud cover in optical imagery).

In this work, we make two main contributions:

• We introduce Probabilistic Multi-Modal Learning
for Remote Sensing (ProMM-RS), a method combin-
ing multi-modal contrastive learning with probabilistic
embeddings to represent RS data as random variables.
ProMM-RS is designed to process multi-source remote
sensing data, specifically leveraging Sentinel-1 (SAR)
and Sentinel-2 (optical) imagery, which are two widely
available modalities in remote sensing data and exhibit
complementary properties;

• We evaluate ProMM-RS on a scene classification down-
stream task, exploring various fusion mechanisms for
probabilistic embeddings. By explicitly modeling un-
certainty, we aim at improving reliability and robust-
ness, particularly in scenarios involving incomplete or
noisy data (e.g. cloud-obstructed optical imagery).

The remainder of this article is organized as follows.
Sec. 2 presents an overview of the state of the art in the
context of learning RS image representations from a self-
supervised and probabilistic perspective. The proposed
ProMM-RS method is detailed in Sec. 3. An experimen-
tal study involving a scene classification task from optical
and radar images is then described in Sec. 4 (with an abla-
tion study provided in Sec. 5), followed by discussions and
conclusions (Sec. 6).

2. Related work
2.1. Self-supervised learning

Recently, self-supervised learning has emerged as an inter-
esting solution in both computer vision and remote sensing
due to its ability to learn rich, generalizable data representa-
tions without the need of (costly) human annotations. This is

particularly advantageous in the RS domain, where labeling
large amounts of data can be prohibitively expensive and
time-consuming.

Among the different families of SSL approaches (relying
on pretext tasks, student-teacher strategies, etc.), a notable
approach involves contrastive techniques. One of the pi-
oneering approaches, SimCLR [5], relies on considering
different augmented views representing the same data (seen
as positive pairs) to train a model to bring them closer to-
gether in the representation space while negative pairs are
moved away from each other. Methods such as MoCo [16]
or DINO [2] were also proven efficient on natural and RS
imagery to enhance feature extraction [28].

2.2. Multi-modal contrastive learning

Nowadays, remote sensing data are acquired daily from
multiple modalities. Optical, multi-spectral, hyper-spectral,
Light Detection and Ranging (Lidar) or SAR sensors pro-
duce different images and highlight specific characteris-
tics. To leverage the complementary information of mul-
tiple modalities, recent publications investigate multi-modal
self-supervised learning, mostly on optical and SAR images.
A common strategy for multi-modal learning is to consider
each modality as an augmented view of the same content to
perform cross-modal contrastive learning. This technique
was proven efficient for (cross-modal) image-text representa-
tions with vision-language models such as CLIP [22] and has
been successfully used on various remote sensing tasks such
as change detection [6, 7, 23] or classification [13, 17, 25].

However, these methods mainly focus on representing
common features and tend to ignore modality-unique subtle
features in the joint embedding space. To deal with this
issue, Wang et al. [26] recently proposed a multi-modal self
supervision structure based on BarlowTwins [29] that decou-
ples common and unique embeddings to effectively learn
multi-modal representations without losing intra-modal fea-
tures. In [19], the authors introduced the FactorCL method
aiming at capturing both shared and unique information by
factorizing task-relevant information. Generative methods
and especially masked autoencoders [15] are also commonly
used to perform cross-modal pre-training. Both [14] and [3]
explored different early/late fusion and masking techniques
to combine SAR and optical images while the authors of [1]
introduced OmniSat, a model employing both multi-modal
contrastive learning and intra-modal reconstruction objec-
tives.

Combining multiple sources of observation and aligning
them on a common latent space can provide additional com-
plementary characteristics compared to intra-modal learning.
However cross-modal contrastive models typically learn to
maximize mutual information shared between modalities
and discard unique features [26, 27]. In this article, we aim
to address this limitation; ProMM-RS exploits a probabilistic



joint embedding space that explicitly models the inherent un-
certainty of modality-specific representations. Probabilistic
embeddings enable the representation of inputs as distribu-
tions rather than fixed points, capturing the variability and
ambiguity within each modality. By incorporating uncer-
tainty measurements, ProMM-RS highlights the distinct and
valuable features contained in each modality, ensuring that
unique characteristics are preserved and leveraged.

2.3. Probabilistic contrastive learning

Probabilistic embedding spaces emerged in the vision-
language field as a potential solution to a fundamental chal-
lenge in multi-modal tasks such as Image-Text matching:
the inherent ambiguity caused by many-to-many correspon-
dences and sparse dataset annotations. Inspired by [20], the
authors of [9] proposed the Probabilistic Cross-modal Em-
beddings (PCME) method to represent embeddings as Gaus-
sian distributions and trained their model using a contrastive
loss between Monte-Carlo sampled distributions. This work
was then extended in PCME++ [8] by introducing a closed
form probabilistic distance and multiple optimization tech-
niques to reduce computational cost and improve efficiency
for cross-modal retrieval. Recently, numerous works used
such probabilistic embedding spaces for various multi-modal
tasks such as soundscape mapping [18], action recognition
and video retrieval [21] or face recognition [4, 24].

In ProMM-RS, we propose a novel probabilistic con-
trastive learning framework inspired by the principles intro-
duced in PCME++ [8]. Our approach redefines the concepts
of probabilistic contrastive learning and adapts them to suit
the challenges of a multi-modal remote sensing setup.

3. Proposed method
This section presents our proposed probabilistic multi-

modal contrastive learning (ProMM-RS) framework for re-
mote sensing image representations. Our model aims at
extracting rich and valuable features from modality-specific
data while explicitly representing the uncertainty of each rep-
resentation by modeling them as random variables. Figure 1
provides an overview of the ProMM-RS architecture, taking
as input multi-modal RS data (SAR and optical imagery)
and mapping them in a joint probabilistic latent space as
random variables. The framework involves two main com-
ponents performed consecutively: (1) a contrastive learning
process, which operates both within and across modalities
to align representations, (2) a probabilistic learning step,
which quantifies and models the uncertainty inherent in the
representations from each modality.

Compared to state-of-the-art multi-modal approaches for
remote sensing representations such as CROMA [13] or Om-
niSAT [1], our framework distinguishes itself by explicitly
integrating uncertainty into the learned representations. This
approach allows us to leverage the complementary informa-

tions contained in both modalities and compare their impor-
tance for feature extraction. We demonstrate the potential
of probabilistic learning by evaluating the joint embedding
space on a classification task, experimenting with various
fusion strategies to combine modality-specific features.

3.1. Probabilistic visual encoders

To produce probabilistic embedding representing a mul-
tivariate normal distribution Z(µ, σ2), we propose a visual
encoder architecture (inspired from [8]) which contains two
output heads returning two D-dimensional vectors represent-
ing mean and variance, respectively µ and log(σ2). The
overview of our Probabilistic Vision Transformer (PVT) ar-
chitecture is summarized in Figure 2.

The employed visual backbone is a common Vision Trans-
former architecture [11] with the last transformer layer du-
plicated for µ and log(σ2) heads. On the 12 layers wide
vision transformers used in this project, 11 transformer lay-
ers are shared for feature extraction while the two output
heads are 1-layer transformer blocks. As investigated by [8],
increasing the number of unique layers for the log(σ2) head
only marginally improves the efficiency of the model. In
practice we only considered 1-layer wide output heads for
computational efficiency.

Feature aggregation is done by applying average pooling
followed by L2-normalization for the µ head.

Having introduced the PVT for its ability to generate
probabilistic embeddings, we integrate in the next section
these encoders into our multi-modal contrastive learning
framework.

3.2. Multi-modal contrastive learning

We encode each modality separately using dedicated en-
coders (Probabilistic Vision Transformers (PVT) defined in
Sec. 3.1), which are first optimized through a contrastive
learning objective to align their features in a shared repre-
sentation space. Our overall multi-modal contrastive learn-
ing framework is illustrated in Figure 1, see box (1). The
contrastive learning framework proposed in this section is
adapted from SimCLR [5] and conceptually similar to [12].
A SimCLR-like strategy is applied to both intra-modal sit-
uation, where augmented views of the same modality are
compared, and cross-modal situation, where views of the
same geo-located image from different modalities serve as
augmented views. This approach ensures that each encoder
is specialized for its respective modality while learning rep-
resentations that can be compared and aligned across modal-
ities. We apply a projection head g(·) before computing the
contrastive loss. As evidenced by SimCLR [5], this projec-
tion head facilitates alignment and improves the quality of
learned representations.

Considering a positive pair of projected representations
hi, hj from an input batch of size N (hence 2N augmented



Figure 1. Visualization of the proposed ProMM-RS framework. The framework integrates a self-supervised training phase where unlabeled
data are passed through modality-specific Probabilistic Vision Transformer (PVT) to obtain representations (Figure 2). Contrastive learning
(1) aligns representations in both intra and inter-modal setup by minimizing the contrastive loss LC while probabilistic learning (2)
incorporates probabilistic modelling through a probabilistic loss LP . Representations are evaluated on a scene classification task where
labeled data is processed through previously trained frozen encoders. Different combinations of obtained probabilistic embeddings are
considered.

Figure 2. Probabilistic Vision Transformer (PVT) architecture
overview. The last layer of a classic vision transformer is duplicated
to map the input to a normal distribution parameterized by the µ
and log(σ2) probabilistic heads.

representations), we define the contrastive loss used for pre-
training as:

lij = − log
exp(sim(hi, hj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(hi, hk)/τ)
(1)

with τ a temperature coefficient, sim(·) the cosine similar-
ity function defined as sim(u, v) = uT v

∥u∥∥v∥ and 1[k ̸=i] the
indicator function. The loss for the entire mini-batch can be
defined as:

L =
1

2N

N∑
k=1

[l2k−1,2k + l2k,2k−1] (2)

We apply this contrastive loss both for intra-modal learn-
ing (between augmented views from the same modality)
and inter-modal learning (between views of two different
modalities).

In a second time, we extend the learned encoders to gen-
erate probabilistic embeddings that explicitly model uncer-
tainty, enhancing their capability to distinguish which modal-
ity contains the most valuable informations.

3.3. Probabilistic distances

Given two input images xA and xB , we encode two
probabilistic embeddings ZA(µA, σ

2
A) and ZB(µB , σ

2
B) de-

fined as multivariate normal distributions with output µ and
log(σ2) being D-dimensional vectors.

The purpose of our model is to learn probabilistic embed-
dings satisfying the following conditions:

• If the embedding contains specific and valuable infor-
mations, its variance should be low;



• If the embedding does not contain any characteristic
information (e.g. coming from an obstructed image),
its variance should be high;

• If an embedding ZA contains more valuable informa-
tions and a better representation than ZB , its variance
σ2
A should be lower than σ2

B .

To adapt our multi-modal framework to probabilistic learn-
ing, a probabilistic measure of similarity between two em-
beddings is required. Closed-form Sampled Distance (CSD)
is a probabilistic distance introduced in [8] to perform cross-
modal retrieval on probabilistic embeddings. Given two
probabilistic embeddings ZA(µA, σ

2
A) and ZB(µB , σ

2
B), the

CSD distance is defined as:

DCSD(ZA, ZB) = ∥µA − µB∥22 + ∥σ2
A + σ2

B∥1, (3)

Even though the CSD distance was initially designed for
cross-modal retrieval, its properties transfer well to our more
general self-supervised learning paradigm:

• Considering a positive pair of inputs xA and xB

mapped to two probabilistic embeddings ZA(µA, σ
2
A)

and ZB(µB , σ
2
B) with fixed means. If the pair is largely

resembling, it should be mapped close in the joint em-
bedding space, i.e. ∥µA − µB∥22 ≈ 0 and the variances
σ2
A and σ2

B should collapse towards 0;

• Now considering a negative pair of embeddings with
fixed means, if the pair is resembling (i.e. ∥µA −
µB∥22 ≈ 0), the contribution of ∥σ2

A + σ2
B∥1 in the

loss will be greater and σ2
A and σ2

B will be increased.
If the pair is largely dissimilar (i.e. ∥µA − µB∥22 ≫ 0),
the variances will still be increased but their overall
contribution in the loss will be lower.

Having defined a probabilistic framework with encoders
mapping to normal distributions output and proper prob-
abilistic distances to assess the similarity of our learned
embeddings, we propose to apply a probabilistic contrastive
learning strategy to model the variance embeddings.

3.4. Probabilistic contrastive learning

To keep dimension-wise correspondence between our
mean and variance representations, we apply contrastive
learning directly on the embeddings ZA(µA, σ

2
A) and

ZB(µB , σ
2
B) without passing them through the projection

head g(·). Our overall probabilistic multi-modal contrastive
learning framework is illustrated in Figure 1, see box (2).

Following [8] implementation of the previously defined
Closed form sampled distance loss (Equation 3), we consider
a soft probabilistic matching loss as follows:

Lmatch = mAB log sigmoid(−aD(ZA, ZB) + b)

− (1−mAB) log sigmoid(aD(ZA, ZB)− b)

(4)

where mAB ∈ {0, 1} is a matching indicator and a, b learn-
able scalar values. This Lmatch function is computed for all
pairs in the mini batch as a contrastive learning objective.

We also consider a pseudo-positive strategy as formulated
by [8] to account for the numerous false negatives. For a posi-
tive match (xA, xB), we consider x

′

B to be a pseudo-positive
match with xA if DCSD(ZA, Z

′

B) < DCSD(ZA, ZB).
Lpseudo-match is then computed for all pseudo-positive pairs
following Equation 4.

To prevent the collapse of σ, we add a Variational Infor-
mation Bottleneck loss (VIB) as evidenced by [20] and [9].
In practice, this is done by minimizing the KL divergence
between the learned distribution and N (0, 1).

Our objective function becomes:

LP = Lmatch + αLpseudo-match + βLVIB (5)

with α the pseudo-match coefficient and β the VIB coeffi-
cient.

To incorporate both inter-modal uncertainty coming from
different modality representations and intra-modal uncer-
tainty potentially coming from noisy image capture, we
train our soft contrastive loss on both intra-modal setup (be-
tween augmented views from the same modality) defined
as LP−intra and inter-modal setup (between views of two
different modalities) defined as LP−inter:

L = LP−inter + δ(LA
P−intra + LB

P−intra) (6)

with δ the intra-modal coefficient.

3.5. Fusion strategies for probabilistic embeddings

To leverage the uncertainty information of our probabilis-
tic embeddings, we propose multiple data fusion strategies.

Given two probabilistic embeddings from two modali-
ties A and B defined by multivariate normal distribution
ZA(µA, σ

2
A) and ZB(µB , σ

2
B), we highlight in Tab. 1 the

different combination strategies used to define the resulting
Y vector representing a geo-located pair of images.

These strategies provide a foundational approach to fus-
ing probabilistic embeddings, focusing on leveraging the
uncertainty of learned representations.

4. Experimental study

As a preliminary experimental study, we evaluate our
learned representations with a scene classification down-
stream task from Sentinel optical and radar images, experi-
menting with various fusion strategies to combine modality-
specific features. We aim to showcase the potential of prob-
abilistic embeddings as a way to measure the relevancy of
each modality representation, especially when one of the
modalities suffers from occlusions.



Table 1. Fusion strategies for probabilistic embeddings. Given
two probabilistic embeddings ZA(µA, σ

2
A) and ZB(µB , σ

2
B) from

modalities A and B: (1) Modality Unique: uses only the mean em-
bedding of one modality. (2) Mean: averages the mean embeddings
from both modalities. (3) Fusion: concatenates the embeddings
from both modalities. (4) Minimal Variance: selects the mean value
from the modality with the smallest variance (highest confidence)
for each dimension. (5) Threshold: uses the mean from modality
A if its variance is below a given threshold; otherwise, it uses the
mean from modality B.

Strategy Formula

Modality Unique Yunique = µ

Mean Ymean = 1
2
(µA + µB)

Fusion Yfusion = (µA, µB)

Minimal Variance

Ymin−var = (y1, . . . , yi, . . . , yd)

where yi =

{
µi
A if σi

A < σi
B ,

µi
B otherwise.

Threshold

Ythreshold = (y1, . . . , yi, . . . , yd)

where yi =

{
µi
A if σi

A < τ,

µi
B otherwise.

4.1. Data

All experiments were conducted on the newly introduced
refined BigEarthNet dataset [10] (also referred to as reBEN),
which contains 549488 multi-modal (Sentinel-1 and Sentinel-
2) image pairs, with additional 69450 cloudy/snowy pairs.
We considered for the experiments: i) the VV and VH bands
for the Sentinel-1 images, ii) the spectral bands associated
with 10m and 20m spatial resolution for Sentinel-2. All
images are of dimension 120×120 pixels. Input data is trans-
formed to produce a corresponding pair of images following
classic data augmentation techniques [5, 28]: RandomRe-
sizedCrop, horizontal flip and color jittering. We used for all
experiments the train/validation/test splits provided by [10].

Note that baseline tests in [10] were conducted on the
reBEN dataset without cloudy and snowy patches. To assess
the potential of probabilistic embeddings on noisy/corrupted
datasets, we evaluate our models on both the same dataset
as [10] and the full reBEN with cloudy/snowy patches.

4.2. Experimental setup

We considered as our base encoders two modality-specific
Vision Transformers. As shown in Figure 1, we trained these
encoders in two steps: i) A multi-modal contrastive learning
strategy for 50 epochs for intra-modal learning and 50 epochs
for inter-modal learning. We set the batch size to 1024 under
an AdamW optimization strategy, with an initial learning rate
of 10−4 and weight decay of 0.05. A cosine scheduler with
10 warm-up epochs is applied; ii) Probabilistic contrastive
learning for 20 epochs with a batch size of 512 under an

AdamW optimization strategy, with an initial learning rate
of 10−4 and weight decay of 0.05. A cosine scheduler with
5 warm-up epochs is applied. As discussed in Sec. 5.2, mean
embeddings and backbone are frozen for the probabilistic
training step, only the layers specific to the log(σ2) head are
trained. For probabilistic training, we set the pseudo-match
coefficient α to 0.1, the VIB coefficient β to 0.001 and the
intra-modal coefficient δ to 0.2. We perform all training
experiments on 8 NVIDIA V100-32Gb GPU.

4.3. Numerical results and discussions

We report hereinafter the results and performances of
our different training strategies compared to linear probing
on classical self-supervised learning framework. To high-
light the value of probabilistic embeddings under a dataset
where one of the modalities may suffer from occlusions,
we evaluate in Tab. 2 our models on the reBEN dataset
including cloudy and snowy patches. We use as metrics Av-
erage Precision (APM/APµ), F1 score (F1M/F1µ), and
Precision (PrecisionM/Precisionµ), evaluated both as
macro-averaged (M ) and micro-averaged (µ) values. Macro-
averaging computes the metric independently for each class
and then averages the results, while micro-averaging ag-
gregates contributions from all classes to calculate a single
overall metric. We observe several key aspects:

• Our cross-modal model is biased on Sentinel-2 rep-
resentations. The results indicate that the learned em-
beddings of Sentinel-2 contain richer and more rele-
vant features, as the use of averaged Sentinel-1 and
Sentinel-2 embeddings does not perform as well as
using Sentinel-2 alone;

• Probabilistic learning effectively learns dimension-
wise embedding relevance. However, we observe
that our model is performing consistently better than
S1+S2(mean) for the probabilistic strategies considered.
This highlights the fact that our learned variance is
measuring dimension-wise relevance of each modal-
ity representation. It enables the model to focus on
Sentinel-1 inputs only when Sentinel-2 does not carry
useful information. This selective capability allows our
model to leverage the complementary information of
both modalities only when needed, rather than combin-
ing them indiscriminately.

To compare our model with existing fully supervised base-
lines of [10], we provide in Tab. 2 the results of the different
training strategies considered in this project on a Vision
Transformer Base backbone, trained on the reBEN dataset
without cloudy/snowy patches.

We observe that our learned multi-modal representations
perform better under a linear probing evaluation than fully su-
pervised models, highlighting the benefits of self-supervised



Table 2. Performances for scene classification on reBEN dataset using a multi-modal self-supervised Vision Transformer backbone trained
under contrastive learning and probabilistic learning with frozen mean embeddings. We evaluate the different fusion strategies highlighted
in Tab. 1. We report the following macro and micro metrics : Average Precision (AP), F1 score and Precision. Prob refers to the use of
probabilistic embeddings for fusing both modalities. For fair comparison, we do not consider the results of S1+S2 for best performing
strategy as the linear classifier receives doubled information from this modality.

Results

Modality Prob? APM APµ FM
1 Fµ

1 PrecisionM Precisionµ

Evaluated on reBEN dataset with cloudy/snowy images

S1 ✗ 61.28 78.01 50.31 67.06 63.32 74.82
S2 ✗ 67.97 81.99 56.71 71.74 67.16 77.33
S1+S2(mean) ✗ 65.00 80.64 54.72 70.26 67.46 77.08
S1+S2(fusion) ✗ 69.49 82.93 57.55 72.55 68.08 77.94

Minimal variance ✓ 69.04 82.44 56.24 71.74 65.67 77.17
Threshold 0.7 ✓ 67.92 81.95 56.32 71.84 67.27 77.33

Evaluated on reBEN dataset without cloudy/snowy images

S1 ✗ 64.51 79.65 53.01 68.55 63.35 75.38
S2 ✗ 71.34 83.67 59.94 73.55 68.49 78.26
S1+S2(mean) ✗ 69.26 82.66 58.70 72.55 70.61 77.92

Minimal variance ✓ 71.30 83.60 59.50 73.37 68.91 78.15

Fully supervised model trained on reBEN dataset without cloudy/snowy images [10]

S1 ✗ 50.94 70.23 39.78 58.98 58.45 71.09
S2 ✗ 63.42 81.41 57.46 71.92 68.29 76.50
S1+S2 ✗ 66.09 83.37 59.81 73.54 70.87 77.74

learning for reliable feature extraction. However, not evalu-
ating the snow or cloud covered patches decreases the effi-
ciency of our probabilistic minimal variance strategy, which
is under performing compared to Sentinel-2 embeddings.

Even though the overall performance of the minimal vari-
ance strategy is weaker, we assess that our probabilistic
strategy is still learning valuable information from Sentinel-
1 images by studying, in Tab. 3, the Average Precision scores
of different labels.

Typically, Sentinel-1 images are known to work well in
urban areas, as the various mix of buildings, roads and in-
frastructures creates strong and distinct returns as the waves
are reflected back to the SAR sensor. Similarly with wa-
ter bodies, the strong contrast difference between the dark
appearance of water surfaces and the surrounding land/man-
made features makes it easy to identify water bodies in SAR
images. On the opposite, vegetated environments tend to ab-
sorb the radar signal and their homogeneous structure make
SAR images less distinct. Given these considerations, we
selected five labels showcasing valuable differences between
both modalities: Urban fabrics, Industrial units, Inland wa-
ters, Coniferous forest and Mixed forest. As expected, we
observe that the average precision score of our minimal vari-
ance strategy is outperforming Sentinel-2 modality on urban
and water environments, since it effectively captures the
relevant information in Sentinel-1 to perform classification,
while Sentinel-2 is still the strongest option for discriminat-
ing between vegetation environments like forests.

5. Ablation studies

The experimental study is completed below by a selected
set of ablations about pseudo-positive matches and the effect
of freezing the mean embeddings.

5.1. Effects of pseudo-positive matches

Tab. 4 reports the results of the probabilistic strategy with
and without incorporation of the pseudo-positive matches.
When training without pseudo-positive match loss term
(Equation 5), we observe a 0.55% point drop in performance
on macro-average precision and 1.17% point drop on micro-
average precision. Theses results illustrate the importance of
considering more nuanced positive and negative matches for
uncertainty estimations, to adress efficiently the multiplicity
of labels and false negatives in contrastive techniques.

5.2. Effects of freezing mean embeddings

In contrast to the probabilistic contrastive learning ap-
proach presented in [8], which does not use frozen mean
embeddings, our results in Tab. 4 demonstrate that allow-
ing the probabilistic training to modify mean embeddings
significantly reduces classification performance. This ef-
fect suggests that unfreezing mean embeddings during train-
ing could result in incorrect and less stable representations.
While letting mean embeddings be adjusted during proba-
bilistic training would theoretically help the model further
distinguish positive and negative matches, our probabilis-



Table 3. Average Precision performances on reBEN dataset without cloudy/snowy images on specific labels using a multi-modal self-
supervised Vision Transformer backbone trained under contrastive and probabilistic learning strategies with frozen mean embeddings.
Experimental setup and model used is the same as Tab. 2.

Average Precision

Modality Prob? Urban fabric Industrial units Inland waters Coniferous forest Mixed forest

S1 ✗ 80.07 46.18 87.42 83.24 79.52
S2 ✗ 81.43 49.20 89.02 89.25 84.70
S1+S2 (mean) ✗ 81.61 49.66 88.95 87.92 83.91

Minimal variance ✓ 82.05 49.39 89.07 87.92 84.33

Table 4. Ablation study : Impact of the pseudo-positive (PP) matching loss and freezing mean embeddings on performances. Experimental
setup and model used is the same as Tab. 2. We report the following macro and micro metrics : Average Precision, F1 score and Precision.

Results

Modality PP? Frozen mean? APM APµ FM
1 Fµ

1 PrecisionM Precisionµ

Minimal variance
✗ ✓ 67.87 81.89 56.29 71.74 66.09 77.18
✓ ✗ 65.58 79.81 53.75 69.29 68.84 77.24
✓ ✓ 69.04 82.44 56.24 71.74 65.67 77.17

tic model may struggle to keep the pre-trained embeddings
aligned and relevant, ultimately leading to worsened perfor-
mances. Freezing the mean embeddings on the other hand
keep the consistent and reliable joint embedding space ob-
tained through the multi-modal pre-training, while focusing
on determining the variations between inputs rather than
altering the input centroid. Further research and hyperpa-
rameter sweeps would be beneficial to analyze the effect of
CSD-based contrastive loss on the mean embeddings.

6. Conclusion and perspectives

In this work, we introduced ProMM-RS (Probabilistic
Multi-Modal Learning for Remote Sensing), a novel method
that combines multi-modal contrastive learning with prob-
abilistic embeddings to represent remote sensing data as
random variables. ProMM-RS is specifically designed to
process multi-source remote sensing data, leveraging the
complementary properties of Sentinel-1 (SAR) and Sentinel-
2 (optical) imagery. By modeling data as probabilistic em-
beddings, we aim to enhance the robustness and reliability
of representations, particularly in challenging scenarios such
as cloud-obstructed optical imagery or incomplete data.

We evaluated the proposed approach on a scene classifica-
tion downstream task, exploring various fusion mechanisms
for probabilistic embeddings. This evaluation demonstrated
the potential of explicitly modeling uncertainty to effectively
address the heterogeneity of multi-modal RS data.

Even though we achieve overall good results with prob-
abilistic training and simple fusion methods such as Min-
imal variance and Threshold, these methods focus solely
on which input is the most similar and has the least uncer-
tainty of representation compared to the other inputs in the
batch, without accounting for the specific strengths of each

modality in extracting relevant features. This is particularly
visible when testing our models on the dataset without oc-
cluded images (as presented in Tab. 2 and Tab. 3), where
the inherent superiority of Sentinel-2 representations makes
the minimal variance strategy weaker on labels with less
distinctive SAR image features (e.g. vegetation environ-
ments). To address this issue, future work could explore
more sophisticated fusion techniques that better leverage
the complementary information in multi-modal probabilis-
tic embeddings by integrating variances more effectively
and incorporating each modality’s intrinsic value, potentially
enhancing the representation quality for downstream tasks.

Additionally, extending this framework to other modal-
ities or time-series could enhance the obtained representa-
tions.

For example, integrating temporal dynamics could help
the model distinguish temporary or persistent features, fur-
ther improving uncertainty quantification. Finally, more
thorough analysis of the obtained probabilistic embeddings
would be necessary to guide new studies and to use the poten-
tial of these representations to optimize multi-modal learning
frameworks, enhancing interpretability, and to improve the
robustness of models in diverse Earth observation scenarios.
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